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Outline
The root locus method was introduced by Evans in the 1950’s. It remains a 

popular tool for simple SISO control design.

• What is a root locus?
• Poles & Transient Response (Why do we care about poles?)
• The Root Locus Method

• Problem Definition
• The Two Key Formulas
• Root Locus Rules

• Examples:
• Flexible Spacecraft
• Robotic Arm
• Helicopter Pitch Control



Designing a Feedback Control System
Using The Root Locus
• First, we choose a compensator

• There are many useful compensator types. We have already seen 
Proportional and Proportional plus Integral.

• This gives us a control structure, i.e., a compensator transfer function.

• The compensator will have one or more free parameters. 
• The root locus method typically focuses on the gain parameter. It is an 

approach to select the gain as to achieve desired transient behavior.
• The root locus rules of behavior provide insight for adjusting additional 

compensator parameters.
• The root locus structure also yields ideas for adding elements to the 

compensator.



What is a Root Locus?
• On the right is a negative 

feedback loop
• We wish to examine the closed 

loop poles as the gain K varies
• As K increases from zero the 4 

poles move from the open loop 
values & trace 4 loci

• At any particular value of K
there are 4 closed loop poles

• In this example there is a 
critical value of K at which the 
system becomes unstable.
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Using Matlab
>> s=tf('s');
>> G=(s+3)/(s*(s+1)*(s+2)*(s+4));
>> rlocus(G)
>> sgrid
>> [K,Poles]=rlocfind(G)
Select a point in the graphics 
window
selected_point =
-0.0720 + 1.4161i

K =
7.3729

Poles =
-4.2940 + 0.0000i
-2.5617 + 0.0000i
-0.0722 + 1.4162i
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Transient Response
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There are three ways to assess system transient behavior:
1. time domain (output time trajectories)
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3. frequency response (Bode or Nyquist plots)
Here we consider . The poles are hion t e roots of

2 2 0p p p qd s s s s s s sρ ω ω ρ ω ω λ λ= + + + + + + = 

Complex roots occur in complex conjugate pairs. In 
this case there are 2p+q poles

The root locus method is concerned with 
adjusting the closed loop pole positions



Ideal Pole Locations
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α

θ
θ ρ= −sin 1damping ratio

Our goal is to design a 
compensator so that the closed 
loop poles lie in the shaded 
region. We get to choose the 
form of the compensator and 
select its parameters.



Problem Definition
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Problem Definition, Cont’d
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,  are completely known, but  is a parameter
that we can adjust.

Root Locus Problem: 
Generate a sketch in the complex plane of 
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Solution Strategies

• We will do this two ways:
• The easy way: Have MATLAB solve for the roots for each of a specified list 

of values for K and plot them.
• The hard (old) way: Generate a sketch by hand.

• Why do it the hard way at all?
• We need to know how to interpret the plot.
• We obtain insight concerning the choice of compensator.
• We learn how to set the compensator parameters other than the gain K.



Root Locus Method ~ 1
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Root Locus Method ~ 2
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Root Locus ~ 3 Using the Angle Formula
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Basic Rules ~ 1 
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Example:
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Basic Rules ~ 2
4. Real-axis segments: For 0 , real axis segments to 

the left of an odd number of finite real axis poles and/or 
zeros are part of the root locus.
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Basic Rules ~ 3

5. Behavior at infinity: The root locus approaches infinity along 
asymptotes with angles:
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Basic Rules ~ 4
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Basic Rules ~ 4
6. Real axis breakaway and break-in points: The root locus breaks away 

from the real axis where the gain is a (local) maximum on the real axis, 
and breaks into the real axis where it is a local minimum
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candidate break points

simply plot  on the axis segment

or solve 0 

7. -axis crossings: Use Routh test to determine values of K for which 
loci cross imaginary axis.
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Routh Stability Test
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Using MATLAB

The basic MATLAB functions are:
rlocus
rlocus(sys) calculates and plots the root locus of the open-loop SISO model sys.

rlocfind
[K,POLES] = RLOCFIND(SYS)  is used for interactive gain selection from the root locus plot of the SISO system SYS 
generated by RLOCUS.  RLOCFIND puts up a crosshair cursor in the graphics window which is used to select a pole 
location on an existing root locus.  The root locus gain associated with this point is returned in K and all the system 
poles for this gain are returned in POLES.

sisotool
When invoked without input arguments, sisotool opens a SISO Design GUI for interactive compensator design. This 
GUI allows you to design a single-input/single-output (SISO) compensator using root locus and Bode diagram 
techniques.



Flexible Spacecraft



Flexible Spacecraft
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Spacecraft 

Re

Im

( ) ( ) ( )

( )

4 3 2

4

3

2
2

2
1

2

0

2 2

1 1 6 10 8

1 1

0

6 8
1 10 0
1 3 6 8 0

1
2 1 23 26

0
1 3 6

8

1 60, 1 3 6 0 3 2, 1 2

cld s s K s K s Ks K

s K K
s K K

K Ks K
K

K K K
s

K K
s K

K K K K K

= + + + + + +

+
+

− +
+
− +

− +

+ − +≥ − ≥ ≥+

Re

Im

Rigid

One Flex Mode

Always positive
(prove it)

unstable 
segment

without flex mode

with flex mode



Example Robotic Arm
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Robotic Arm 2
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Robotic Arm 3
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Robotic Arm 4
>> s=tf('s');
>> G=20*(s+0.1)/(s^2*(s+4)*(s+5.5)^2);
>> rlocus(G)
>> rlocfind(G)
Select a point in the graphics window
selected_point =
-0.2161 + 0.0104i

ans =
2.1211

selected_point =
-0.0415 + 2.7640i

ans =
24.9776



Robotic Arm 5
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Example: Helicopter Pitch Control

helicopterpilot

stabilizer
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 Pick the inner loop pitch control gain K2 so that the dominant 
inner loop poles have a damping ratio of 0.707.
 Select an outer loop gain (stick sensitivity) to place the poles.
 Determine ultimate error in response to unit step disturbance.

Notice unstable 
dynamics



Inner (Stabilization) Loop
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Outer Loop Design
Inner looppilot
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Outer Loop

• On the basis of the 
root locus on the 
right, choose a gain 
of K=1.

• The closed loop 
poles are:
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Disturbance Response Error 
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Summary
• How poles characterize transient response
• Observing the influence of gain on closed loop poles using root 

locus plots
• Sketching the root locus:

• The magnitude and gain formulas
• Basic rules of root locus sketching
• Using MATLAB

• Examples
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